About
The Joint School of Nanoscience and Nanoengineering (JSNN) is a collaboration of North Carolina A&T State University and The University of North Carolina at Greensboro. JSNN's research and educational programs focus on the emerging areas of nanoscience and nanoengineering. The strengths of the two universities in the basic sciences and in engineering make them ideal partners for this new, interdisciplinary school. JSNN faculty and students will be able to access laboratories and classrooms at NC A&T, UNCG as well as the leading edge JSNN faculty at the Gateway University Research Park.

Nanotechnology is often referred to as convergent technology because it utilizes knowledge from a diverse array of disciplines including biology, chemistry, physics, engineering, and technology. Nanotechnology is rapidly becoming a large part of the world's economy, generating an array of materials, technologies, and new products. JSNN's Professional Master of Science in nanoscience and PhD in nanoscience degree programs have been developed to meet the need for trained professionals in the emerging high technology industries using nanotechnology.

JSNN has six research focus areas—nanobioscience, nanometrology, nanomaterials (with special emphasis on nanocomposite materials), nanobioelectronics, nanoenergy, and computational nanotechnology. These technical areas will afford numerous opportunities for collaboration with industrial partners.

Mission Statement
The mission of the Nanoscience Department in the Joint School of Nanoscience and Nanoengineering is to prepare students from a variety of backgrounds to conduct interdisciplinary fundamental, applied, and translational Nanoscience research, and support a collaborative research environment that leverages transdisciplinary research platforms.

Faculty
Professors
Daniel Herr, Nanoelectronics, designed materials and assembly, and optimization (Chair of Department). (E)
James Ryan, Thin films, nanoelectronics, semiconductor process technology (Dean). (E)

Associate Professors
Christopher Kepley, Nanomedicines, nanoimmunology, fullerenes, understanding ways to inhibit inflammatory diseases, designing new nano-based diagnostics and theranostics for human disease. (E)

Dennis R. LaJeunesse, Biomimetic/bio-composite materials, mitochondrial morphology and muscle structure/function, modeling viral disease using the drosophila model system. (E)
Hemali Rathnayake, Organic materials (OLEDs, OPVs, and OTEGs), nanomaterials and polymer chemistry (Director of Graduate Study). (E)
Joseph Starobin, Application of methods of theoretical, mathematical and computational physics to cardiovascular research; electrophysiological data collection with MEMS and nano-enabled sensors. (E)
Jianjun Wei, Functional nanomaterials, nanophotonics & nanophotonics, bioelectronics & biomimetics, electron transfer studies, and applications in bio/sensing, biomedicine, energy and environments. (E)