COMPUTER SCIENCE, B.S.

The courses in the Computer Science Department are designed to teach the foundations of computing rather than a particular technology, so that the student is prepared to adapt to changing technology. Students are exposed to various programming languages and computing systems.

The job market in computer science is strong. A student completing a bachelor’s degree with a strong academic record can expect job offers as a systems programmer or analyst, applications programmer, systems support staff member, technical staff member, or similar positions. The undergraduate curriculum has also been designed to prepare students for graduate studies (master’s and doctoral degrees) in computer science. Qualified students who have an interest in research will have opportunities to participate in projects with department faculty during undergraduate or graduate studies.

Students must maintain a grade point average of at least 2.0 in the core courses, required electives, and required supporting discipline courses.

Because computer science courses change rapidly, it is recommended that the sequence CSC 130, CSC 230, CSC 330 be completed within 4 consecutive semesters.

The B.S. degree in Computer Science program is accredited by the Computing Accreditation Commission of ABET (www.abet.org).

Overall Requirements

- 120 credit hours, to include at least 36 credits at or above the 300 course level

Degree Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
</table>

University Requirements (https://catalog.uncg.edu/academic-regulations-policies/undergraduate-policies)

General Education Core Requirements (GEC) (https://catalog.uncg.edu/academic-regulations-policies/undergraduate-policies/general-education-program/#generaleducationcorerequirementstext)

College of Arts and Sciences Additional Requirements (LEC) (https://catalog.uncg.edu/arts-sciences/#additionalundergraduaterequirementstext)

Optional Concentration

The optional concentration as detailed following the major requirements may be added, but is not required.

- Data Science and Big Data

Electives

Electives sufficient to complete the 120 credit hours required for the degree.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
</table>

CSC 230	Elementary Data Structures and Algorithms	
CSC 250	Foundations of Computer Science I	
CSC 261	Computer Organization and Assembly Language	
CSC 330	Advanced Data Structures	
CSC 339	Concepts of Programming Languages	
CSC 340	Software Engineering	
CSC 350	Foundations of Computer Science II	
CSC 362	System Programming	
CSC 452	Theory of Computation	
CSC 462	Principles of Operating Systems	
CSC 471	Principles of Database Systems	
CSC 490	Senior Capstone	

<table>
<thead>
<tr>
<th>CSC Electives</th>
<th>12</th>
</tr>
</thead>
</table>

Select an additional 12 credits from any CSC course at the 300 level or above.

Supporting Discipline Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
</table>

MAT 191	Calculus I †	
MAT 292	Calculus II	
PHI 222	Ethics in the Computer Age ††	
STA 271	Fundamental Concepts of Statistics	
STA 290	Introduction to Probability and Statistical Inference	

<table>
<thead>
<tr>
<th>Science Requirements</th>
<th>8</th>
</tr>
</thead>
</table>

Select two of the following courses: **

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
</table>

BIO 111 & 111L	Principles of Biology I and Principles of Biology I Laboratory	
BIO 112 & 112L	Principles of Biology II and Principles of Biology II Laboratory	
CHE 111 & CHE 112	General Chemistry I and General Chemistry I Laboratory ††	
CHE 114 & CHE 115	General Chemistry II and General Chemistry II Laboratory	
PHY 291 & 291L	General Physics I with Calculus and General Physics I with Calculus Lab ††	
PHY 292 & 292L	General Physics II with Calculus and General Physics II with Calculus Lab	

* Three of these credit hours may be satisfied by one of the following courses: MAT 293 Calculus III, MAT 310 Elementary Linear Algebra, MAT 390 Ordinary Differential Equations, STA 301 Statistical Methods, or STA 352 Statistical Inference

** When registering for the science course, students must concurrently register for the lab component of the course.

† Counts toward GEC GMT requirement.

†† Counts toward GEC GNS requirement.

Major Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Required</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSC 130</td>
<td>Introduction to Computer Science</td>
<td>39</td>
</tr>
</tbody>
</table>

CSC 200	Introduction to Programming Concepts	
CSC 210	Programming Languages	
CSC 220	Software Engineering Systems	
CSC 230	Elementary Data Structures and Algorithms	
CSC 250	Foundations of Computer Science I	
CSC 260	Computer Organization and Assembly Language	
CSC 330	Advanced Data Structures	
CSC 339	Concepts of Programming Languages	
CSC 340	Software Engineering	
CSC 350	Foundations of Computer Science II	
CSC 360	System Programming	
CSC 450	Theory of Computation	
CSC 460	Principles of Operating Systems	
CSC 470	Principles of Database Systems	
CSC 490	Senior Capstone	

<table>
<thead>
<tr>
<th>CSC Electives</th>
<th>12</th>
</tr>
</thead>
</table>

Select an additional 12 credits from any CSC course at the 300 level or above.

Supporting Discipline Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
</table>

MAT 191	Calculus I †	
MAT 292	Calculus II	
PHI 222	Ethics in the Computer Age ††	
STA 271	Fundamental Concepts of Statistics	
STA 290	Introduction to Probability and Statistical Inference	

<table>
<thead>
<tr>
<th>Science Requirements</th>
<th>8</th>
</tr>
</thead>
</table>

Select two of the following courses: **

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
</table>

BIO 111 & 111L	Principles of Biology I and Principles of Biology I Laboratory	
BIO 112 & 112L	Principles of Biology II and Principles of Biology II Laboratory	
CHE 111 & CHE 112	General Chemistry I and General Chemistry I Laboratory ††	
CHE 114 & CHE 115	General Chemistry II and General Chemistry II Laboratory	
PHY 291 & 291L	General Physics I with Calculus and General Physics I with Calculus Lab ††	
PHY 292 & 292L	General Physics II with Calculus and General Physics II with Calculus Lab	

* Three of these credit hours may be satisfied by one of the following courses: MAT 293 Calculus III, MAT 310 Elementary Linear Algebra, MAT 390 Ordinary Differential Equations, STA 301 Statistical Methods, or STA 352 Statistical Inference

** When registering for the science course, students must concurrently register for the lab component of the course.

† Counts toward GEC GMT requirement.

†† Counts toward GEC GNS requirement.

Major Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Required</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSC 130</td>
<td>Introduction to Computer Science</td>
<td>39</td>
</tr>
</tbody>
</table>

CSC 200	Introduction to Programming Concepts	
CSC 210	Programming Languages	
CSC 220	Software Engineering Systems	
CSC 230	Elementary Data Structures and Algorithms	
CSC 250	Foundations of Computer Science I	
CSC 260	Computer Organization and Assembly Language	
CSC 330	Advanced Data Structures	
CSC 339	Concepts of Programming Languages	
CSC 340	Software Engineering	
CSC 350	Foundations of Computer Science II	
CSC 360	System Programming	
CSC 450	Theory of Computation	
CSC 460	Principles of Operating Systems	
CSC 470	Principles of Database Systems	
CSC 490	Senior Capstone	

<table>
<thead>
<tr>
<th>CSC Electives</th>
<th>12</th>
</tr>
</thead>
</table>

Select an additional 12 credits from any CSC course at the 300 level or above.

Supporting Discipline Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
</table>

MAT 191	Calculus I †	
MAT 292	Calculus II	
PHI 222	Ethics in the Computer Age ††	
STA 271	Fundamental Concepts of Statistics	
STA 290	Introduction to Probability and Statistical Inference	

<table>
<thead>
<tr>
<th>Science Requirements</th>
<th>8</th>
</tr>
</thead>
</table>

Select two of the following courses: **

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
</table>

BIO 111 & 111L	Principles of Biology I and Principles of Biology I Laboratory	
BIO 112 & 112L	Principles of Biology II and Principles of Biology II Laboratory	
CHE 111 & CHE 112	General Chemistry I and General Chemistry I Laboratory ††	
CHE 114 & CHE 115	General Chemistry II and General Chemistry II Laboratory	
PHY 291 & 291L	General Physics I with Calculus and General Physics I with Calculus Lab ††	
PHY 292 & 292L	General Physics II with Calculus and General Physics II with Calculus Lab	

* Three of these credit hours may be satisfied by one of the following courses: MAT 293 Calculus III, MAT 310 Elementary Linear Algebra, MAT 390 Ordinary Differential Equations, STA 301 Statistical Methods, or STA 352 Statistical Inference

** When registering for the science course, students must concurrently register for the lab component of the course.

† Counts toward GEC GMT requirement.

†† Counts toward GEC GNS requirement.

Optional Concentration

The optional concentration as detailed following the major requirements may be added, but is not required.

- Data Science and Big Data

Electives

Electives sufficient to complete the 120 credit hours required for the degree.
Data Science and Big Data Concentration Requirements

- 15 credit hours as defined below
- Students in the Data Science and Big Data Concentration must satisfy all requirements for the B.S. in Computer Science, and must complete the following courses.*

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSC 330</td>
<td>Advanced Data Structures</td>
<td>4</td>
</tr>
<tr>
<td>CSC 405</td>
<td>Data Science</td>
<td>3</td>
</tr>
<tr>
<td>CSC 410</td>
<td>Big Data and Machine Learning</td>
<td>3</td>
</tr>
<tr>
<td>CSC 471</td>
<td>Principles of Database Systems</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives

Select 3 credits from the courses below

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSC 425</td>
<td>Bioinformatics</td>
<td>3</td>
</tr>
<tr>
<td>CSC 429</td>
<td>Artificial Intelligence</td>
<td>3</td>
</tr>
<tr>
<td>CSC 454</td>
<td>Algorithm Analysis and Design</td>
<td>3</td>
</tr>
<tr>
<td>STA 431</td>
<td>Introduction to Probability</td>
<td>3</td>
</tr>
<tr>
<td>STA 435</td>
<td>Theory of Linear Regression</td>
<td>3</td>
</tr>
</tbody>
</table>

* CSC 330 and CSC 471 are currently required in the B.S. program, and other CSC courses below may be used to satisfy B.S. elective requirements as well as concentration requirements.

Disciplinary Honors in Computer Science

Requirements

- A minimum of 12 credit hours as defined below.
- A grade of B or higher in all course work used to satisfy the Honors requirements in Computer Science and at least a 3.30 overall GPA at graduation.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSC 493</td>
<td>Honors Work in Computer Science</td>
<td>4</td>
</tr>
<tr>
<td>HSS 490</td>
<td>Senior Honors Project</td>
<td>2</td>
</tr>
</tbody>
</table>

Select 6 credits from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSC 415</td>
<td>Computer Graphics</td>
<td>3</td>
</tr>
<tr>
<td>CSC 416</td>
<td>Digital Image Processing</td>
<td>3</td>
</tr>
<tr>
<td>CSC 425</td>
<td>Bioinformatics</td>
<td>3</td>
</tr>
<tr>
<td>CSC 427</td>
<td>Numerical Analysis and Computing</td>
<td>3</td>
</tr>
<tr>
<td>CSC 429</td>
<td>Artificial Intelligence</td>
<td>3</td>
</tr>
<tr>
<td>CSC 439</td>
<td>Introduction to Compiler Design</td>
<td>3</td>
</tr>
<tr>
<td>CSC 442</td>
<td>Human-Computer Interface Development</td>
<td>3</td>
</tr>
<tr>
<td>CSC 454</td>
<td>Algorithm Analysis and Design</td>
<td>3</td>
</tr>
<tr>
<td>CSC 461</td>
<td>Principles of Computer Architecture</td>
<td>3</td>
</tr>
<tr>
<td>CSC 471</td>
<td>Principles of Database Systems</td>
<td>3</td>
</tr>
<tr>
<td>CSC 477</td>
<td>Principles of Computer Networks</td>
<td>3</td>
</tr>
<tr>
<td>CSC 478</td>
<td>Principles of Wireless Networks</td>
<td>3</td>
</tr>
</tbody>
</table>

Accelerated B.S. to M.S.

Application and Admission

Qualified UNC Greensboro undergraduate students who are pursuing the Bachelor of Science (B.S.) in Computer Science may apply for admission to the Accelerated Master's Program (AMP). A cumulative undergraduate GPA of at least 3.5 based on at least 30 credits earned at UNC Greensboro is required. Applicants must have completed at least 60 credits and may not apply for admission to the AMP before the first semester of the junior year. Applicants will not be required to take the GRE. All applicants must complete the Accelerated Master's Program information along with their application for admission to the graduate degree program.

Courses

Admitted students may apply the following 12 credits of graduate-level course work toward completion of both the undergraduate and graduate degree, provided that they earn a grade of B (3.0) or better in the course and fulfill graduate-level requirements:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSC 652</td>
<td>Theory of Computation</td>
<td>3</td>
</tr>
<tr>
<td>CSC 654</td>
<td>Algorithm Analysis and Design</td>
<td>3</td>
</tr>
<tr>
<td>CSC 662</td>
<td>Principles of Operating Systems</td>
<td>3</td>
</tr>
<tr>
<td>CSC 677</td>
<td>Principles of Computer Networks</td>
<td>3</td>
</tr>
</tbody>
</table>

Please consult with an advisor to determine how the course taken at the graduate level will meet requirements in the bachelor's degree program. All degree requirements for the M.S. in Computer Science remain the same.

Recognition

Receive a Certificate of Disciplinary Honors in Computer Science; have that accomplishment, along with the title of the Senior Honors Project, noted on the official transcript; and be recognized at a banquet held at the end of the spring semester.

Honors Advisor

Contact Lixin Fu at l_fu@uncg.edu for further information and guidance about Honors in Computer Science. To apply: http://honorscollege.uncg.edu/forms/disc-application.pdf